Extensions 1→N→G→Q→1 with N=C22 and Q=C4xD5

Direct product G=NxQ with N=C22 and Q=C4xD5
dρLabelID
D5xC22xC480D5xC2^2xC4160,214

Semidirect products G=N:Q with N=C22 and Q=C4xD5
extensionφ:Q→Aut NdρLabelID
C22:1(C4xD5) = Dic5:4D4φ: C4xD5/Dic5C2 ⊆ Aut C2280C2^2:1(C4xD5)160,102
C22:2(C4xD5) = C4xC5:D4φ: C4xD5/C20C2 ⊆ Aut C2280C2^2:2(C4xD5)160,149
C22:3(C4xD5) = D5xC22:C4φ: C4xD5/D10C2 ⊆ Aut C2240C2^2:3(C4xD5)160,101

Non-split extensions G=N.Q with N=C22 and Q=C4xD5
extensionφ:Q→Aut NdρLabelID
C22.1(C4xD5) = D20.2C4φ: C4xD5/Dic5C2 ⊆ Aut C22804C2^2.1(C4xD5)160,128
C22.2(C4xD5) = D20.3C4φ: C4xD5/C20C2 ⊆ Aut C22802C2^2.2(C4xD5)160,122
C22.3(C4xD5) = C23.1D10φ: C4xD5/D10C2 ⊆ Aut C22404C2^2.3(C4xD5)160,13
C22.4(C4xD5) = C20.46D4φ: C4xD5/D10C2 ⊆ Aut C22404+C2^2.4(C4xD5)160,30
C22.5(C4xD5) = C4.12D20φ: C4xD5/D10C2 ⊆ Aut C22804-C2^2.5(C4xD5)160,31
C22.6(C4xD5) = C23.11D10φ: C4xD5/D10C2 ⊆ Aut C2280C2^2.6(C4xD5)160,98
C22.7(C4xD5) = D5xM4(2)φ: C4xD5/D10C2 ⊆ Aut C22404C2^2.7(C4xD5)160,127
C22.8(C4xD5) = C8xDic5central extension (φ=1)160C2^2.8(C4xD5)160,20
C22.9(C4xD5) = C20.8Q8central extension (φ=1)160C2^2.9(C4xD5)160,21
C22.10(C4xD5) = C40:8C4central extension (φ=1)160C2^2.10(C4xD5)160,22
C22.11(C4xD5) = D10:1C8central extension (φ=1)80C2^2.11(C4xD5)160,27
C22.12(C4xD5) = C10.10C42central extension (φ=1)160C2^2.12(C4xD5)160,38
C22.13(C4xD5) = D5xC2xC8central extension (φ=1)80C2^2.13(C4xD5)160,120
C22.14(C4xD5) = C2xC8:D5central extension (φ=1)80C2^2.14(C4xD5)160,121
C22.15(C4xD5) = C2xC4xDic5central extension (φ=1)160C2^2.15(C4xD5)160,143
C22.16(C4xD5) = C2xC10.D4central extension (φ=1)160C2^2.16(C4xD5)160,144
C22.17(C4xD5) = C2xD10:C4central extension (φ=1)80C2^2.17(C4xD5)160,148

׿
x
:
Z
F
o
wr
Q
<